LRRC52 (leucine-rich-repeat-containing protein 52), a testis-specific auxiliary subunit of the alkalization-activated Slo3 channel.
نویسندگان
چکیده
KSper, a pH-dependent K(+) current in mouse spermatozoa that is critical for fertility, is activated by alkalization in the range of pH 6.4-7.2 at membrane potentials between -50 and 0 mV. Although the KSper pore-forming subunit is encoded by the Slo3 gene, heterologously expressed Slo3 channels are largely closed at potentials negative to 0 mV at physiological pH. Here we identify a Slo3-associating protein, LRRC52 (leucine-rich repeat-containing 52), that shifts Slo3 gating into a range of voltages and pH values similar to that producing KSper current activation. Message for LRRC52, a homolog of the Slo1-modifying LRRC26 protein, is enriched in testis relative to other homologous LRRC subunits and is developmentally regulated in concert with that for Slo3. LRRC52 protein is detected only in testis. It is markedly diminished from Slo3(-/-) testis and completely absent from Slo3(-/-) sperm, indicating that LRRC52 expression is critically dependent on the presence of Slo3. We also examined the ability of other LRRC subunits homologous to LRRC26 and LRRC52 to modify Slo3 currents. Although both LRRC26 and LRRC52 are able to modify Slo3 function, LRRC52 is the stronger modifier of Slo3 function. Effects of other related subunits were weaker or absent. We propose that LRRC52 is a testis-enriched Slo3 auxiliary subunit that helps define the specific alkalization dependence of KSper activation. Together, LRRC52 and LRRC26 define a new family of auxiliary subunits capable of critically modifying the gating behavior of Slo family channels.
منابع مشابه
SLO3 auxiliary subunit LRRC52 controls gating of sperm KSPER currents and is critical for normal fertility.
Following entry into the female reproductive tract, mammalian sperm undergo a maturation process termed capacitation that results in competence to fertilize ova. Associated with capacitation is an increase in membrane conductance to both Ca(2+) and K(+), leading to an elevation in cytosolic Ca(2+) critical for activation of hyperactivated swimming motility. In mice, the Ca(2+) conductance (alka...
متن کاملIntracellular calcium-dependent regulation of the sperm-specific calcium-activated potassium channel, hSlo3, by the BKCa activator LDD175
Plasma membrane hyperpolarization associated with activation of Ca2+-activated K+ channels plays an important role in sperm capacitation during fertilization. Although Slo3 (slowpoke homologue 3), together with the auxiliary γ2-subunit, LRRC52 (leucine-rich-repeat-containing 52), is known to mediate the pH-sensitive, sperm-specific K+ current KSper in mice, the molecular identity of this channe...
متن کاملBK potassium channel modulation by leucine-rich repeat-containing proteins.
Molecular diversity of ion channel structure and function underlies variability in electrical signaling in nerve, muscle, and nonexcitable cells. Regulation by variable auxiliary subunits is a major mechanism to generate tissue- or cell-specific diversity of ion channel function. Mammalian large-conductance, voltage- and calcium-activated potassium channels (BK, K(Ca)1.1) are ubiquitously expre...
متن کاملRegulation of BK channels by auxiliary γ subunits
The large-conductance, calcium- and voltage-activated potassium (BK) channel has the largest single-channel conductance among potassium channels and can be activated by both membrane depolarization and increases in intracellular calcium concentration. BK channels consist of pore-forming, voltage- and calcium-sensing α subunits, either alone or in association with regulatory subunits. BK channel...
متن کاملThe single transmembrane segment determines the modulatory function of the BK channel auxiliary γ subunit
The large-conductance, calcium-activated potassium (BK) channels consist of the pore-forming, voltage- and Ca(2+)-sensing α subunits (BKα) and the tissue-specific auxiliary β and γ subunits. The BK channel γ1 subunit is a leucine-rich repeat (LRR)-containing membrane protein that potently facilitates BK channel activation in many tissues and cell types through a vast shift in the voltage depend...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 108 48 شماره
صفحات -
تاریخ انتشار 2011